3D SPH simulations of grain growth in protoplanetary disks
نویسنده
چکیده
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one solar mass star. The results are in agreement with a turbulent growing process and validate the method. We are now able to simulate the grain growth process in a protoplanetary disk given by a more realistic physical description, currently under development. We discuss the implications of the combined effect of grain growth and dust vertical settling and radial migration on subsequent planetesimal formation.
منابع مشابه
SPH simulations of grain growth in protoplanetary disks
Aims. In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distributio...
متن کاملOn the Submillimeter Opacity of Protoplanetary Disks
Solid particles with the composition of interstellar dust and power-law size distribution dn/da ∝ a−p for a ≤ amax with amax & 3λ and 3 < p < 4 will have submm opacity spectral index β(λ) ≡ d lnκ/d ln ν ≈ (p−3)βism, where βism ≈ 1.7 is the opacity spectral index of interstellar dust material in the Rayleigh limit. For the power-law index p ≈ 3.5 that characterizes interstellar dust, and that ap...
متن کاملSize-sorting dust grains in the surface layers of protoplanetary disks
Context: The shape of dust emission features measured from protoplanetary disks contains information about the typical size of the dust particles residing in these disks. A flattened 10 μm silicate feature is often interpreted as proof that grain growth has taken place, while a pointy feature is taken as evidence for the pristine
متن کاملGravitational instability in binary protoplanetary disks; new constraints on giant planet formation
We use high resolution 3D SPH simulations to study the evolution of selfgravitating binary protoplanetary disks. Heating by shocks and cooling are included. We consider different orbital separations and masses of the disks and central stars. Isolated massive disks (M ∼ 0.1M⊙) fragment into protoplanets as a result of gravitational instability for cooling times comparable to the orbital time. Fr...
متن کاملDust in Protoplanetary Disks
We critically examine the best lines of evidence for grain growth in protoplanetary disks, based on modelling of observed spectral energy distributions and images of T Tauri and Herbig Ae stars. The data are consistent with millimeter-sized grains near disk midplanes, and micron-sized grains near disk surfaces. We review three channels by which grains can grow, including direct condensation fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008